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Oceans as a Heat Reservoir – Supplemental Background Infor-

mation 

Thermal radiation of solid bodies 
Any given body with a temperature above absolute zero, i.e.  𝑇 > 0 K radiates. According to Planck’s 

Radiation Law (ideally for a black body), the distribution of frequencies of the emitted spectrum 

depends on the temperature. 
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Integrating overall frequencies leads to the Radiation Law of Stefan Boltzmann, which describes the 

total emitted power. In reality, black bodies only exist up to a certain degree of approximation. 

Therefore, Kirchhoff’s Radiation Law about the radiant power of any given body can be applied: 

𝐿Ω𝜈(𝛽, 𝜑, 𝜈, 𝑇) = 𝐿Ω𝜈
𝑜 (𝜈, 𝑇) ⋅ 𝑎𝜈

′ (𝛽, 𝜑, 𝜈, 𝑇) 

This means that the radiant power 𝐿Ω𝜈(𝛽, 𝜑, 𝜈, 𝑇) of a given body is as large as the total radiant 

power of a black body 𝐿Ω𝜈
𝑜 (𝜈, 𝑇) having the same temperature and the same absorptivity  

𝑎𝜈
′ (𝛽, 𝜑, 𝜈, 𝑇).  The spectral radiance and absorptivity may also depend on the angle of incident radi-

ation. Thus, according to Kirchhoff’s Radiation Law, the radiant power of any given body is directly 

proportional to the radiant power of a black body with the same temperature. 

Further, Kirchhoff’s Radiation Law leads to the conclusion that with a given temperature, a body 
with good heat absorption also releases heat well. 

Stefan Boltzmann’s Law 
The Stefan Boltzmann Law describes the emitted power of a black body radiating isotropically in all 

directions. For the total radiation power of a black body, the following equation applies:  

𝑃 = 𝜎 ⋅ 𝐴 ⋅ 𝑇4 

𝐴 is the area of the radiating cross section of the body, and 𝜎 is the Stefan Boltzmann constant, a 

natural constant with the value of: 

𝜎 =
2𝜋5𝑘𝐵

4

15ℎ3𝑐2
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Together with Kirchhoff’s Radiation Law, the Stefan Boltzmann Radiation Law for any given body 

results in 

𝑃 = 𝜀(𝑇) ⋅ 𝜎 ⋅ 𝐴 ⋅ 𝑇4 

with a temperature dependent emissivity  𝜀(𝑇). 
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Emissivity is a parameter that reflects the properties of the radiating substance and surface. For a 

given temperature, surfaces with different emissivity appear differently bright. As a result, the ther-

mic radiation is also stronger. 

 
Figure 1: Photographs of Leslie's cube. The colour photographs are taken using an infrared camera; the black and white 
photographs underneath are taken with an ordinary camera. All faces of the cube are at the same temperature of about 
55 °C. The face of the cube that has been painted has a large emissivity, which is indicated by the reddish colour in the 
infrared photograph. The polished face of the aluminium cube has a low emissivity indicated by the blue colour, and the 
reflected image of the warm hand is clear (Pieter Kuiper, https://commons.wikimedia.org/wiki/ 
File:LesliesCube.png, public domain). 

Heat capacity 
If heat 𝑄 is added to liquids (or other material in general), their temperature 𝑇 rises. Both increases 

(Δ𝑄, Δ𝑇) are directly proportional to each other. 

Δ𝑄 ∝ Δ𝑇 

Thought experiment 

An immersion heater with the radiative power 𝑃 will add energy to the liquid within a certain period 

of time Δ𝑡 according to:  

Δ𝑄 = 𝜅 ⋅ 𝑃 ⋅ Δ𝑡 

In this case, 𝜅 is a dimensionless quantity with 𝜅 ∈ [0; 1], corresponding to the percentage of the 

energy transformed and absorbed by the liquid. 

Δ𝑄 ∝ 𝑃 ⋅ Δ𝑡 

means that the energy needed by the immersion heater is directly proportional to the temperature 

change Δ𝑇. 

Remark: This experiment also works with a water filled paper cup, positioned over the flame of a 

Bunsen burner. 

https://commons.wikimedia.org/wiki/File:LesliesCube.png
https://commons.wikimedia.org/wiki/File:LesliesCube.png
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If you double the amount of liquid with 𝑚 being the mass, you find the following correlation: 

Δ𝑄 ∝ 𝑚 

In summary, the following is valid 

Δ𝑄 ∝ 𝑚 ⋅ Δ𝑇 

with a proportionality constant 

𝑐 =
Δ𝑄

𝑚 ⋅ Δ𝑇
 

The quantity 𝑐 is called the specific heat capacity. It depends on the material. The dependence on 

the temperature is neglected in this example. The unit of the specific heat capacity is: 

[𝑐] = 1
J

kg ⋅ K
 

It is commonly listed in units of: 

1
kJ

kg ⋅ K
= 1

J

g ⋅ K
 

With a value of cW = 4.182
kJ

kg⋅K
, water has a high specific heat capacity and thus is an excellent heat 

reservoir due to its simple and low priced availability. 

Cooling process of materials 
The cooling process of a given body with the temperature 𝑇(𝑡) and an environmental temperature 

𝑈(𝑡) can be described with the following differential equation: 

d𝑇(𝑡)

d𝑡
= −𝑘 ⋅ 𝑇(𝑡) + 𝑘 ⋅ 𝑈(𝑡), 

with the initial condition 𝑇(𝑡0) = 𝑇0. Provided the environmental temperature is constant, the dif-

ferential equation describes an exponential decline (or an exponential increase).  The cooling con-

stant 𝑘 is given as: 

𝑘 =
𝛼𝐴

𝑚𝑐
 

It depends on the heat capacity, the mass of the body, the area of the interacting surface cross sec-

tion, and the heat transfer coefficient 𝛼. Applied to our experiment, this means that due to its higher 

heat capacity, water cools down more slowly. 


