Let's make a model of the Orion constellation by calculating the diameter of each star and its distance from the sun.

Nature and distance of the stars of the constellation of Orion:

Stars	Nature	Distance from sun (Light Year)	Length of spike (cm) Scale: $1 \mathrm{~cm}=>75$ Light Year	Corresponding Diameter in cm - Dwarfs: 2 mm - Giant: 1 cm - Supergiants/ Blue-White: 1.5 cm - Supergiant/ Red-Orange $: 3 \mathrm{~cm}$
Meissa	Giant Blue/white	1055		
Betelgeuse	Supergiant/ Orange	420		
Bellatrix	Giant/ Blue-white	240		
Alnitak	Supergiant/ Blue	820		
Alnilam	Supergiant/ Blue	1340		
Mintaka	Giant Blue/White	910		
Saiph	Supergiant /Blue	720		
Rigel	Supergiant / Blue	770		
Aldebaran	Giant/ Orange	75		
Sun	Yellow Dwarf	0		

Nebula	Nature	Distance from sun (Light Year)	Length of spike (cm)	Corresponding Diameter
The Orion Nebula	Red Gas and dust Cloud	1500 Light Years		4 cm in diameter containing 4 young white-blue giants

Note: It will be necessary to add around 2.5 cm more for each spike corresponding to the depth of the polystyrene plate.

