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Yes
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Low Cost

SKILLS

Asking questions, Developing and using models, Planning and carrying out investigations, Analysing and
interpreting data, Communicating information

TYPE OF LEARNING

Structured-inquiry learning, Modelling

GOALS

With this activity, the students will learn that - Celestial navigation and the
corresponding tools have already been developed many centuries ago. - The kamal
is a simple tool to measure the elevations of stars. - With the kamal, we can easily
determine our latitude on earth.

LEARNING OBJECTIVES

Students will build their own historical navigational instrument to
understand how medieval mariners used the stars for navigation.
They will use it to determine their latitude on earth and so understand how
simple and accurate this device is.
In the course of the activity, the students will learn to find Polaris, the North
Star, to be able to determine the cardinal directions during the night, which
provides them with basic knowledge for navigating the seas.

BACKGROUND

Latitude and longitude 

• 

• 

• 



Figure 1: Illustration of how the latitudes and longitudes of the Earth are defined
(Credits: Peter Mercator, djexplo, CC0). 

 

Any location in an area is defined by two coordinates. The surface of a sphere is a
curved area, and using directions like up and down is not useful, because the
surface of a sphere has neither a beginning nor an ending. Instead, we can use
spherical polar coordinates originating from the centre of the sphere, which has a
fixed radius (Figure 1). Two angular coordinates remain, which for the Earth are
called the latitude and the longitude. The axis of rotation is also the symmetry
axis. The North Pole is defined as the point where the theoretical axis of rotation
coincides with the surface of the sphere, and the Earth rotates in a counter-
clockwise direction when the pole is viewed from above. The opposite point is the
South Pole. The equator is defined as the great circle halfway between the poles. 

The latitudes are circles parallel to the equator. They are counted from 0° at the
equator to ±90° at the poles. The longitudes are great circles connecting the two
poles of the Earth. For a given position on Earth, the longitude going through the
zenith, which is the point directly above, is called the meridian. This is the line that
the Sun apparently crosses at local noon. The origin of this coordinate is defined
as the meridian of Greenwich, where the Royal Observatory of England is located.
From there, longitudes are counted from 0° to ±180°. 

Example: Heidelberg in Germany is located at 49.4° North and 8.7° East. 

Elevation of the pole (pole height) 
If we project the terrestrial coordinate system of latitudes and longitudes in the
sky, we get the celestial equatorial coordinate system. The Earth’s equator
becomes the celestial equator and the geographical poles are extrapolated to build
the celestial poles. If we were to take a photograph of the northern sky with a long
exposure, we would see from the trails of the stars that they all revolve about a
common point, which is the northern celestial pole (Figure 2). 

In the northern hemisphere, there is a moderately bright star near the celestial
pole, which is the North Star or Polaris. It is the brightest star in the Little Bear
constellation, or Ursa Minor (Figure 3). In the present era, Polaris is less than a
degree off. However, 1000 years ago, it was 8° away from the pole. Therefore,
today, we can use it as a proxy for the position of the celestial north pole. At the
southern celestial pole, there is no such star that can be observed with the naked
eye. Other procedures have to be applied to find it. 

Figure 2: Trails of stars at the sky after an exposure time of approximately 2 hours
(Credit: Ralph Arvesen, Live Oak star trails, https://www.flickr.com/photos/
rarvesen/9494908143, https://creativecommons.org/licenses/by/2.0/legalcode) 



 

Figure 3: Configuration of the two constellations Ursa Major (Great Bear) and
Ursa Minor (Little Bear) in the northern sky. Polaris, the North Star, which is close
to the true celestial north pole, is the brightest star in Ursa Minor (Credit: Bonč,
https://commons.wikimedia.org/wiki/File:Ursa_Major_- Ursa_Minor -_Polaris.jpg,
‘Ursa Major – Ursa Minor – Polaris’, based on https://commons.wikimedia.org/wiki/
File:Ursa_Major_and_Ursa_Minor_Constellations.jpg, colours inverted by Markus
Nielbock, https://creativecommons.org/licenses/by-sa/3.0/legalcode). 



 

If we stood exactly at the geographical North Pole, Polaris would always be
directly overhead. We can say that its elevation would be (almost) 90°. This
information introduces the horizontal coordinate system (Figure 4), which is a
natural reference we use every day. We, the observers, are the origin of that
coordinate system located on a flat plane, whose edge is the horizon. The sky is
imagined as a hemisphere above. The angle between an object in the sky and the
horizon is the altitude or elevation. The direction within the plane is given as an
angle between 0° and 360°, the azimuth, which is usually measured clockwise
from the north. In navigation, this is also called the bearing. The meridian is the
line that connects north and south at the horizon and passes the zenith. 

Figure 4: Illustration of the horizontal coordinate system. The observer is the
origin of the coordinates assigned as the azimuth and altitude or elevation
(Credit: TWCarlson, https://commons.wikimedia.org/wiki/File:Azimuth-
Altitude_schematic.svg, ‘Azimuth-Altitude schematic’, https://
creativecommons.org/licenses/by-sa/3.0/legalcode). 



 

For any other position on Earth, the celestial pole or Polaris would appear at an
elevation less than 90°. At the equator, it would just appear at the horizon, i.e. at
an elevation of 0°. The correlation between the latitude (North Pole = 90°,
Equator = 0°) and the elevation of Polaris is no coincidence. Figure 5 combines all
three mentioned coordinate systems. For a given observer at any latitude on Earth,
the local horizontal coordinate system touches the terrestrial spherical polar
coordinate system at a single tangent point. The sketch demonstrates that the
elevation of the celestial north pole, also called the pole height, is exactly the
northern latitude of the observer on Earth. 

Figure 5: When the three coordinate systems (terrestrial spherical, celestial
equatorial and local horizontal) are combined, it becomes clear that the latitude
of the observer is exactly the elevation of the celestial pole, also known as the
pole height (Credit: M. Nielbock, own work). 



 

From this, we can conclude that if we measure the elevation of Polaris, we can
determine our latitude on Earth with reasonable precision. 

Triangles and trigonometry 
The concept of the kamal relies on the relations within triangles. These are very
simple geometric constructs that the ancient Greeks worked with. One basic rule
is that the sum of all angles in a triangle is 180° or π. This depends on whether the
angles are measured in degrees or radians. One radian is defined as the angle that
is subtended by an arc whose length is the same as the radius of the underlying
circle. A full circle measures 360° or 2π. 

The sides of a triangle and its angles are connected via trigonometric functions,
e.g. sine, cosine and tangent. The easiest relations can be seen in right-angled
triangles, where one of the angles is 90° or π/2. 

Figure 6: A right-angled triangle with γ being the right angle (Credit: Dmitry
Fomin, CC0). 

 



The hypotenuse is the side of a triangle opposite the right angle. In Figure 6, it is c.
The other sides are called legs or catheti. The leg opposite to a given angle is
called the opposite leg, while the other is the adjacent leg. In a right-angled
triangle, the relations between the legs and hypotenuse are expressed as
trigonometric functions of the angles. 

sin α = a/c = opposing leg / hypotenuse (Equation 1) 

cos α = b/c = adjacent leg / hypotenuse (Equation 2) 

tan α = (sin α) / (cos α) = a/b = opposing leg / adjacent leg (Equation 3) 

The Pythagorean Theorem tells us something about the relations between the
three legs of a right-angled triangle. It is named after the ancient Greek
mathematician Pythagoras and states that the sum of the squares of the catheti is
equal to the square of the hypotenuse. 

c 2 = a 2 + b 2 (Equation 4) 

For general triangles, this expands to the law of cosines. 

c 2 = a 2 + b 2 - 2ab ∙ cos γ (Equation 5) 

For γ=90°, it reduces to the Pythagorean Theorem. 

Early navigation 
Early seafaring peoples often navigated along coastlines before sophisticated
navigational skills were developed and tools were invented. Sailing directions
helped to identify coastal landmarks (Hertel, 1990). To some extent, their
knowledge about winds and currents helped them to cross short distances, e.g. in
the Mediterranean. 

Soon, navigators realised that celestial objects, especially stars, can be used to
maintain the course of a ship. Such skills have been mentioned in early literature
like Homer’s Odyssey, which is believed to date back to the 8th century BCE. There
are accounts of ancient Phoenicians who were able to even leave the
Mediterranean and ventured on voyages to the British coast and even several
hundred miles south along the African coast (Johnson & Nurminen, 2009). A very
notable and well-documented long-distance voyage has been mentioned by
ancient authors and scholars like Strabo, Pliny and Diodorus of Sicily. It is the
voyage of Pytheas, a Greek astronomer, geographer and explorer from Marseille
who, around 300 BCE, apparently left the Mediterranean by passing Gibraltar and
carried on north until the British Isles and beyond the Arctic Circle, where he
possibly reached Iceland or the Faroe Islands, which he called Thule (Baker &
Baker, 1997). Pytheas used a gnomon or sundial, which allowed him to determine
his latitude and measure the time during his voyage (Nansen, 1911). 

Sailing along a latitude 
At these times, the technique of sailing along a parallel (of the equator) or latitude
was based on observing circumpolar stars. The concept of latitudes in the sense
of angular distances from the equator was probably not known. However, it was
soon realised that when looking at the night sky, some stars within a certain
radius around the celestial poles never set; these are circumpolar stars. When
sailing north or south, sailors observe that the celestial pole changes, too, and
with it, the circumpolar radius. Therefore, whenever navigators see the same star
culminating, i.e. transiting the meridian, at the same elevation, they stay on the
‘latitude’. For them, it was sufficient to realise the connection between the
elevation of stars and their course. Navigators had navigational documents that
listed seaports together with the elevation of known stars. In order to reach the
port, they simply sailed north or south until they reached the corresponding
latitude and then continued west or east. 



Nowadays, the easiest way to determine one’s latitude on Earth is to measure the
elevation of the North Star, Polaris, as a proxy for the true celestial North Pole. In
our era, Polaris is less than a degree off. However, 1000 years ago, it was 8° away
from the pole. 

The kamal 
The kamal is a navigational tool invented by Arabian sailors in the 9th century CE
(McGrail, 2001). Its purpose is to measure stellar elevations without the notion of
angles. If you stretch out your arm, one finger subtends an angle. This method
appears to have been the earliest technique to determine the elevation of stars. In
the Arabian world, this ‘height’ is called isba ( عبصإ ), which simply means finger. The
corresponding angle is 1°36‘ (Malhão Pereira, 2003). 

Figure 7: A simple wooden kamal. It consists of a surveying board and a cord with
a line of knots (Credit: Bordwall https://commons.wikimedia.org/wiki/
File:Simple_Wooden_Kamal_(Navigation).jpg, ‘Simple Wooden Kamal
(Navigation)’, https://creativecommons.org/licenses/by-sa/3.0/legalcode). 

 

This method was standardised by using a wooden plate, originally sized roughly 5
cm × 2.5 cm, with a cord attached to its centre. When held at various distances,
the kamal subtends different angles between the horizon and the stars (Figure 8).
Knots located at different positions along the cord denote the elevations of stars
and, consequently, the latitude of various ports. 

Figure 8: Illustration of how the kamal was used to measure the elevation of a star,
in this case, Polaris. The lower edge was aligned to the horizon. Then, the distance
between the eyes and the kamal was modified until the upper edge touched the
star. The distance was set by knots tied into the cord that was held between the
mouth and the kamal. The knots indicate the elevations of stars (Credit: M.
Nielbock, https://commons.wikimedia.org/wiki/File:Kamal_Polaris.png, https://
commons.wikimedia.org/wiki/File:Kamal_Polaris_Side.png, https://
creativecommons.org/licenses/by/4.0/legalcode). 



 

When Vasco da Gama set out to find the sea passage from Europe to India in 1497,
he stopped at the Eastern African port of Melinde (now, Malindi), where the local
Muslim Sheikh provided him with a skilled navigator of the Indian Ocean to guide
him to the shores of India. This navigator used a kamal for finding the sailing
directions (Launer, 2009). 

Since the latitudes the Arabian sailors crossed during their passages through the
Arabian and Indian Seas are rather small, the mentioned size of the kamal is
sufficient. For higher latitudes, the board must be bigger so that the cord is not
too short to realise such angles. 

Figure 9: Excerpt of a world map from 1502 showing the Indian Ocean. All sea
routes from the Arabian Peninsula and India lie between the Tropic of Cancer and
the Equator. The port of Melinde is indicated at the third flag from the top at the
eastern African coast (Credit: Cantino Planisphere, 1502, Biblioteca Estense
Universitaria, Modena, Italy, https://commons.wikimedia.org/wiki/
File:Cantino_planisphere_(1502).jpg, public domain). 

 



The geometry of the kamal 
To measure an angle φ with a kamal of height h, the distance between the eyes
and the board held perpendicularly to the line of sight needed is l. This is realised
by a knot in the cord on the side opposite to the kamal board. In this simple
configuration, we get: 

l = h' / tanφ' = h / (2∙ tan(φ/2) ) (Equation 6) 

Figure 10: Simplified geometry of the kamal, which subtends an angle φ between
the horizon and Polaris. The kamal has a height labelled h. The length of the cord
between the eyes and the kamal is labelled l (Credit: M. Nielbock, own work). 

 

However, the length is measured with the cord between the teeth or just in front
of the lips. The eyes and mouth are separated by the length d (Figure 11). The true
length of the cord is then l, while l' is the distance between the eyes and the kamal
board that defines the angle φ. This more realistic approach leads to the following
equation: 
(Equation 7) 

 

We see that for d=0, we again get the simplified version above. The difference
between l and l' can be a few centimetres. A realistic value is d=7 cm. 

This geometry is accurate enough for uncertainties inherent to the measurement
method. Note that it is always assumed that the kamal board is held at an angle
perpendicular to the line of sight, not the cord. In addition, the horizon is assumed
to be the mathematical one (Figure 5). This means that the dip of the visible
horizon is neglected. 

Figure 11: More realistic geometry of the kamal considering the difference in
distance between the kamal on one side and the mouth and the eyes on the other.
The distance between the mouth and the eyes is labelled d (Credit: M. Nielbock,
own work). 



 

Glossary 
Apparent movement 
Movement of celestial objects which, in fact, is caused by the rotation of the Earth.

Cardinal directions 
Main directions, i.e. north, south, west and east 

Circumpolar 
Property of celestial objects that never set below the horizon. 

Culmination 
Passing the meridian of celestial objects. These objects attain their highest or
lowest elevation there. 

Diurnal 
Concerning a period that is caused by the daily rotation of the Earth around its
axis. 

Elevation 
Angular distance between a celestial object and the horizon. 

Great circle 
A circle on a sphere, whose radius is identical to the radius of the sphere. 

Meridian 
A line that connects north and south at the horizon via the zenith. 

Pole height 
Elevation of a celestial pole. Its value is identical to the latitude of the observer on
earth. 

Spherical polar coordinates 
The natural coordinate system of a flat plane is Cartesian and measures distances
in two perpendic¬ular directions (ahead, back, left, right). For a sphere, this is not
very useful, because it has neither a beginning nor ending. Instead, the fixed point
is the centre of the sphere. When projected outside from the central position, any
point on the surface of the sphere can be determined by two angles, with one of
them being related to the symmetry axis. This axis defines the two poles. In
addition, there is the radius that represents the third dimension of space, which



enables us to determine each point within a sphere. This defines the spherical
polar coordinates. When defining points on the surface of a sphere, the radius
stays constant. 

Zenith 
Point in the sky directly above. 

FULL DESCRIPTION

INTRODUCTION 

It would be beneficial if the activity were to be discussed in the larger context of
seafaring, e.g. in geography, history, literature, etc. 

Tip: This activity could be combined with other forms of acquiring knowledge like
oral presentations in history, literature or geography with navigation as the
highlight. This would represent the field in a much more interactive way than what
a teacher can achieve by summarising the facts. 

Tip: There are excellent documentaries available on sea exploration and
navigation that could be shown as an introduction. 

Episode 2: Celestial Navigation (Duration: 4:39mins) https://youtu.be/
DoOuSo9qElI 

How did early Sailors navigate the Oceans? | The Curious Engineer (Duration:
6:20mins) https://youtu.be/4DlNhbkPiYY 

Isn't that India? - Navigation at Sea I PIRATES (Duration: 5:56 mins) https://
youtu.be/OCPnmfe5PJ4 

Navigation in the Age of Exploration (Duration: 7:05 mins) https://youtu.be/
X3Egmp94aZw 

World Explorers in 10 Minutes (Duration: 9:59mins) https://youtu.be/iUkOfzhvMMs

Once upon a time … man: The Explorers - The first navigators (Duration: 23:13
mins) https://youtu.be/KuryXLnHsEY 

The Ancient Seamasters (Duration: 1:29:07mins) https://youtu.be/47kAtmYTCmY 

Ask the students if they have any ideas about how long mankind has used ships to
cross the oceans. One may point out the spread of Homo sapiens to islands and
isolated continents like Australia. 

Possible answers: We know for sure that ships have been used to cross large
distances since 3,000 BCE or earlier. However, the early settlers in Australia must
have found a way to cross the oceans around 50,000 BCE. 

Ask the students what the benefits of trying to explore the seas could have been.
Perhaps, someone knows historic cultures or peoples that were famous sailors.
The teacher can support this with a few examples of ancient seafaring peoples,
e.g. from the Mediterranean. 

Possible answers: Finding new resources and food, trade, the spirit of exploration
and curiosity. 

Ask the students how they find their way to school every day. What supports their
orientation so they don’t get lost? As soon as reference points (buildings, traffic
lights, bus stops, etc.) have been mentioned, ask the students how navigators were



able to find their way on the seas. In early times, people used sailing directions in
connection to recognisable landmarks. But for this, the ships would have to stay
close to the coast. Lighthouses improved the situation. Magnetic compasses have
been a rather late invention, around the 11th century CE, and they were not used in
Europe before the 13th century. So what could be used as reference points in the
open sea? Probably the students will soon mention celestial objects like the Sun,
the Moon and stars. 

Tell the story of the kamal and Vasco da Gama, the discoverer of the direct
passage from Europe to India. See the corresponding section in the background
material and https://archive.org/stream/vascodagamahisvo00towl#page/136/
mode/2up http://www.heritage-history.com/?
c=read&author=towle&book=dagama&story=king 

ACTIVITY: BUILDING THE KAMAL 

This can be done by the teacher prior to the activities or introduced as an
additional exercise for the students. An instruction manual is available separately. 

Material needed: - one piece of ply wood (preferred) or very stiff - card board (21
cm × 12 cm × 4 mm) - 50 cm of cord - Pencil - Ruler - Saw (for the wood) or
scissors (for the cardboard), if the board has to be cut to fit the size needed - Drill
(for the wood) or thick needle (for the cardboard) 

The kamal was originally conceived as a navigational tool for low latitudes.
Therefore, its size was relatively small, i.e. a few centimetres. This was enough to
measure angles of 10° to 20° degrees above the horizon. For example, for a kamal
of height 5 cm, a cord length of 20 cm yields an elevation measure of 15°. However,
this relation is not linear. Therefore, for higher latitudes, a larger kamal board is
needed. A good compromise is a height of 21 cm, while the width can be 12 cm.
With these dimensions, the following relations hold. For very low latitudes, the
kamal can be rotated by 90°, and the smaller width permits smaller cord lengths to
reach the same angles. 

Table 1: Dimensions and relations between the angles and lengths of a kamal
according to Eq. (7). The distance between the eyes and the mouth is assumed to
be d=7 cm. 

Angle subtended (°) | Board height (cm)| Cord length (cm)| Board width (cm)|
Cord length (cm) --- | --- | --- | --- 30 | 21 | 41.6 | 12 | 25.1 35 | 21 | 36.0 | 12 | 22.2 40
| 21 | 31.9 | 12 | 20.0 45 | 21 | 28.8 | 12 | 18.3 50 | 21 | 26.3 | 12 | 17.0 55 | 21 | 24.2 | 12 |
16.0 60 | 21 | 22.5 | 12 | 15.2 65 | 21 | 21.1 | 12 | 14.4 70 | 21 | 19.9 | 12 | 13.8 

For each kamal, prepare a thin piece of ply wood (approx. 4 mm) of size 21 cm × 12
cm. If this is not available, a piece of very stiff cardboard of equal size can also be
used. Determine the centre of the board by drawing or scratching two diagonal
lines that connect opposite corners. Drill a hole through the centre that is big
enough to permit the cord to fit through. It must also be small enough not to let it
slide out again after a knot is tied. 

Figure 12: The kamal after running the cord through the central hole (Credit: M.
Nielbock, own work) 



 

Tie a knot at one end of the cord and run it through the central hole of the board.
The knot should block the cord from sliding through the hole. 

Now add knots at distances from the board as indicated in Table 1. Be careful to
keep the cord straight. You can restrict the number of knots according to the
angular range needed for the activities. Remember that the elevation of Polaris
corresponds to the latitude. 

Fill out the table on the worksheet that lists the number of knots and the
corresponding angles. 

ACTIVITY: ANGELS IN THE SKY 

Introduction 
The worksheets contain Figure 2 (star trails). There are a few questions to be
asked that can help students understand the concept of the apparent trajectories
of stars. 

Q: What does this picture show, in particular, where do the bright curved lines
come from? 
A: As the Earth rotates, the stars seem to revolve around a common point. This is
the celestial pole. The long exposure enables visualisation of the path of the stars
as trails. 

Q: How does the picture show us that some stars do not set or rise during a full
day? 
A: Many trails can be followed to form a full circle. One rotation is 24 hours. 

Q: Can you identify the star that is next to the celestial North Pole? In this picture,
it should be close to the centre of rotation. 
A: This is Polaris or the North Star. It is the star that produces the smallest trail
close to the centre of the trails. 

Q: Imagine you are at the terrestrial North Pole. Where would Polaris be in the
sky? Where would it be if you stood at the equator? 
A: North Pole: zenith, i.e. directly above Equator: at the northern horizon 

Preparations 
Find a spot outside with a good view of the northern sky and the horizon. This
activity can be done as soon as the North Star is visible. Therefore, the summer
time may not the best season for this activity. 

Finding Polaris 
Finding Polaris in the sky is rather simple. As soon as the stars are visible, let the
students look at them for a while and ask them if they knew the group of stars
that is often called the Big Dipper. Its name is different in different cultures (Ladle,
Great Chariot, Plough, Drinking Gourd). It is easy to find in the northern
hemisphere as it is always above the horizon. A video explains this in detail. 



Find North with the Stars - Polaris & Ursa Major - Celestial Navigation (Duration:
11:04) https://youtu.be/n_gT9nBfhfo Figure 3 also shows how Polaris can be
found using the Big Dipper (also available as individual images). It is present in the
worksheet. Find the box of the stellar group and the two stars at the front (α,β).
Extend the line between them five times and find a moderately bright star. This is
Polaris, the North Star. 

Measuring the elevation of Polaris 
Now the students use the kamal. The cord must be kept straight during the
measurements. The board must be held with the smaller edges up and down and
perpendicular to the line of sight. Any tilt would compromise the measurement. 

As shown in Figure 8 (provided in the worksheet), the lower edge of the kamal
must be aligned with the horizon. Then, the length of the cord is modified until
the upper edge touches the star. The alignment with the horizon and the star
should be checked again. 

The students count the number of knots needed to keep the kamal aligned.
Counting starts with the knot closest to the board. They may have to interpolate
the position between knots. They write down the number and read the
corresponding angle from the list in their worksheet. They will have determined
the latitude. 

The values of the various individuals and groups may differ. 

Q: Why are the results not always identical? 
A: Some aspects are not perfect (especially knot positions), and different kamal
sizes change the perspective a bit. Further, the kamal may not always be held
correctly. 

Q: How would this affect real navigation on open seas? 
A: Small errors of a few degrees can lead to course deviations. One degree in
latitude corresponds to 60 nautical miles. Repeated measurements and additional
information can mitigate this effect. 

Analysis 
This can be done as homework and checked during the next lesson in school. Let
the students check their results with a local map that provides coordinates or
online services like Google Maps or Google Earth. 

In Google Earth, you can right-click on your location and then click on “What’s
here?”. A small window appears at the bottom of the screen and lists two
numbers. The first is the latitude in degrees with decimals. This number is added
to the worksheet. 

The students may realise that the result differs from their own measurement. Let
them write down the underlying reasons. 

During the next lesson, let them discuss their results. 

EVALUATION

Detailed instructions for building the kamal are included. It is a very simple
process. The result of the latitude measurement can be easily checked using
online resources. This is also part of the activity. 
The teacher is responsible for providing a basic background on latitudes and
longitudes. However, the success of learning can be judged from the
questions and answers provided. 

• 

• 



Finding Polaris is a prerequisite for the success of this activity. If this activity
is conducted by a group, the students can support each other. In addition,
the teacher can guide the students by 

presenting a planetarium software for practising. 
taking them to a planetarium. 
using a laser pointer during the field experiment. 

CURRICULUM

ADDITIONAL INFORMATION

CONCLUSION

The kamal is a navigational tool that was invented by Arab navigators and has
been used for many centuries since. This activity uses the example of the kamal to
demonstrate how navigation at sea can be successful with some knowledge about
astronomy and the stars combined with simple tools. The students learn some
major aspects of the history of navigation by applying the basics of maths and
astronomy. They build their own kamal and learn how to use it to determine their
latitude on Earth by using Polaris as the resting reference point in the sky. With
this activity, they get a feeling for what it took to find one’s way on the oceans.
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